弹簧厂 >弹簧行业动态 >弹簧国内动态 > > 压缩弹簧的几何参数计算
                                                                 

压缩弹簧的几何参数计算

来源:弹簧厂      发布时间:13-07-02 02:31    次浏览   大小:  16px  14px  12px

(一) 几何参数计算
普通圆柱螺旋弹簧的主要几何尺寸有:外径D、中径D2、内径D1、节距p、螺旋升角α及弹簧丝直径d。由下图圆柱螺旋弹簧的几何尺寸参数图可知,它们的关系为:

  式中弹簧的螺旋升角α,对圆柱螺旋压缩弹簧一般应在5°~9°范围内选取。弹簧的旋向可以是右旋或左旋,但无特殊要求时,一般都用右旋。                  

 
圆柱螺旋弹簧的几何尺寸参数

  普通圆柱螺旋压缩及拉伸弹簧的结构尺寸计算公式见表(普通圆柱螺旋压缩及拉伸弹簧的结构尺寸(mm)计算公式)。


(二)特性曲线

  弹簧应具有经久不变的弹性,且不允许产生永久变形。因此在设计弹簧时,务必使其工作应力在弹性极限范围内。在这个范围内工作的压缩弹簧,当承受轴向载荷P时,弹簧将产生相应的弹性变形,如右图a所示。为了表示弹簧的载荷与变形的关系,取纵坐标表示弹簧承受的载荷,横坐标表示弹簧的变形,通常载荷和变形成直线关系(右图b)。这种表示载荷与变形的关系的曲线称为弹簧的特性曲线。对拉伸弹簧,如图<圆柱螺旋拉伸弹簧的特性曲线> 所示,图b为无预应力的拉伸弹簧的特性曲线;图c为有预应力的拉伸弹簧的特性曲线。

  右图a中的H0是压缩弹簧在没有承受外力时的自由长度。弹簧在安装时,通常预加一个压力Fmin,使它可靠地稳定在安装位置上。Fmin称为弹簧的最小载荷(安装载荷)。在它的作用下,弹簧的长度被压缩到H1其压缩变形量为λminFmax为弹簧承受的最大工作载荷。在Fmax作用下,弹簧长度减到H2,其压缩变形量增到λmaxλmax与λmin的差即为弹簧的工作行程h,h=λmax-λmin。 Flim为弹簧的极限载荷。在该力的作用下,弹簧丝内的应力达到了材料的弹性极限。与Flim对应的弹簧长度为H3,压缩变形量为λlim

圆柱螺旋压缩弹簧的特性曲线

  等节距的圆柱螺旋压缩弹簧的特性曲线为一直线,亦即                

  压缩弹簧的最小工作载荷通常取为 Fmin=(0.1~0.5)Fmax;但对有预应力的拉伸弹簧(图<圆柱螺旋拉伸弹簧的特性曲线>), Fmin>F0F0为使只有预应力的拉伸弹簧开始变形时所需的初拉力。弹簧的最大工作载荷Fmax,由弹簧在机构中的工作条件决定。但不应到达它的极限载荷,通常应保持Fmax≤0.8Flim

  弹簧的特性曲线应绘在弹簧工作图中,作为检验和试验时的依据之一。此外,在设计弹簧时,利用特性曲线分析受载与变形的关系也较方便。

圆柱螺旋拉伸弹簧的特性曲线


  
    上一篇:普通圆柱螺旋弹簧尺寸系列                                                         下一篇:压缩(拉伸)弹簧的受载时的应力及变形
    
发送到:
                 
相关文章

           
© 2006-2013 leidream.com Inc. 浙ICP备13016447号  宁波弹簧厂 站长统计:   网站地图 sitemap